Lab 02: BMI 5/625

Working in the Jidywerse
Alison Hill (w/ modifications by Steven Bedrick)

Tidyverse basics

Last week, we covered some basics:

- \leftarrow (variable assignment)
- \%>\% (then...)
- dplyr, ggplot2 (packages)
- install.packages("dplyr") (1x per machine)
- library (dplyr) (1x per work session)

Let's renieue

Data for today

We'll use data from the Museum of Modern Art (MoMA)

- Publicly available on GitHub
- As analyzed by fivethirtyeight.com
- And by others

Get the data

Use this code chunk to import my cleaned CSV file:

```
library(readr)
moma \leftarrow read_csv("../data/artworks-cleaned.csv")
```


Data wrangling so far

All functions from dplyr package

From Last Week

- print a tibble
- filter
- arrange
- mutate

From Lab 01

- glimpse
- distinct
- count

Plus: \%>\%

Let's renieue some helpful functions for filter

First:

Logical Oprerators

?base:: Logic

Operator	Description	Usage
$\&$	and	$\mathrm{x} \& \mathrm{y}$
\mid	or	$\mathrm{x} \mid \mathrm{y}$
xor	exactly x or y	xor (x, y)
$!$	not	$!\mathrm{x}$

Logical or (\mid) is inclusive, so $x \mid y$ really means:

- x or
- y or
- both x \& y

Exclusive or (xor) is exclusive, so xor (x, y) really means:

- x or
- y...
- but not both x \& y

```
x}\leftarrowc(0,1, 0, 1
y \leftarrowc(0, 0, 1, 1)
boolean_or }\leftarrowx|
exclusive_or }\leftarrow\operatorname{xor(x, y)
cbind(x, y, boolean_or, exclusive_or)
```

	x	y	boolean_or
$[1]$,	0	0	0
$[2]$,	0	1	0
$[3]$,	0	1	1
$[4]$,	1	1	1
			0

Second:

Comparisons

Operator	Description	Usage
$<$	less than	$\mathrm{x}<\mathrm{y}$
$<=$	less than or equal to	$\mathrm{x}<=\mathrm{y}$
$>$	greater than	$\mathrm{x}>\mathrm{y}$
$>=$	greater than or equal to	$\mathrm{x}>=\mathrm{y}$
$==$	exactly equal to	$\mathrm{x}==\mathrm{y}$
!=	not equal to	x != y
\%in\%	group membership*	$\mathrm{x} \% \mathrm{~m} \% \mathrm{y}$
is.na	is missing	is.na(x)
!is.na	is not missing	!is.na(x)

*(shortcut to using | repeatedly with $=$)

Lab 02: Challenge 1 (dplyr)

1. How many paintings (rows) are in moma? How many variables (columns) are in moma?
2. What is the first painting acquired by MoMA? Which year? Which artist? What title?

- Hint: you may want to look into select + arrange

3. What is the oldest painting in the collection? Which year? Which artist? What title? (see above hint)
4. How many distinct artists are there?
5. Which artist has the most paintings in the collection? How many paintings are by this artist?
6. How many paintings are by male vs female artists?

If you want more:

1. How many artists of each gender are there?
2. In what year were the most paintings acquired? Created?
3. In what year was the first painting by a (solo) female artist acquired? When was that painting created? Which artist? What title?

New this week: group_by

Many dplyr verbs can be grouped
I.e., their operation can be performed on partitions of your data:
("average of X, by Y)
Consider summarise:

```
# A tibble: 1 x 1
    mean_length
        <dbl>
1
    43.9
```

penguins \%>\% filter(!is.na(bill_length_mm)) \%>\%
summarise(mean_length=mean(bill_length_mm))

New this week: group_by

Many dplyr verbs can be grouped
I.e., their operation can be performed on partitions of your data:
("average of X, by Y)

```
penguins %>% filter(!is.na(bill_length_mm)) %>%
    group_by(species) %>%
    summarise(mean_length=mean(bill_length_mm))
```

\# A tibble: 3×2
species mean_length
<fct> <dbl>
1 Adelie 38.8
2 Chinstrap 48.8
3 Gentoo 47.5

Most other dplyr verbs will "play nicely" with grouped data:
arrange, slice, count, top_n, etc.

Under the hood

What does group_by actually do?

```
penguins.grouped }\leftarrow\mathrm{ penguins %>% group_by(species)
penguins.grouped
# A tibble: 344 x 8
# Groups: species [3]
    species island bill_length_mm bill_depth_mm flipper_length_mm body_ma
    <fct> <fct> <dbl> <dbl> <int>
    1 Adelie Torgersen 39.1 18.7 181
    2 Adelie Torgersen 39.5 17.4 186
    3 Adelie Torgersen 40.3 18 195
    4 \text { Adelie Torgersen NA NA NA}
    5 Adelie Torgersen 36.7 19.3 193
    6 Adelie Torgersen 39.3 20.6 190
    7 Adelie Torgersen 38.9 17.8 181
    8 Adelie Torgersen 39.2 19.6 195
    9 Adelie Torgersen 34.1 18.1 193
10 Adelie Torgersen 42 20.2 190
# ... with 334 more rows, and 2 more variables: sex <fct>, year <int>
```


Multiple Groups

"How many males and females of each sex do we have?"

```
penguins %>% group_by(species, sex) %>% tally
```

Note that the resulting dataframe is still grouped by species!

```
penguins %>% group_by(species, sex)
# A tibble: 344 x 8
# Groups: species, sex [8]
    species island bill_length_mm bill_depth_mm flipper_length_mm body_ma
    <fct> <fct> <dbl> <dbl> <int>
1 Adelie Torgersen
2 Adelie Torgersen
3 \text { Adelie Torgersen}
4 \text { Adelie Torgersen NA NA NA}
5 Adelie Torgersen 36.7 19.3 193
6 Adelie Torgersen 39.3 20.6 190
7 Adelie Torgersen 38.9 17.8 181
8 Adelie Torgersen 39.2 19.6 195
9 Adelie Torgersen
    34.1
6 Adelie Torgersen 39.3 20.6 190
7 Adelie Torgersen 38.9 17.8 181
8 Adelie Torgersen 39.2 19.6 195
    39.5
        18.7
        181
    40.3 18186
40.3 18 195
    18.1
    193 19 / 29
```


Lab 02: Challenge 1 (dplyr)

1. How many paintings (rows) are in moma? How many variables (columns) are in moma?
2. What is the first painting acquired by MoMA? Which year? Which artist? What title?

- Hint: you may want to look into select + arrange

3. What is the oldest painting in the collection? Which year? Which artist? What title? (see above hint)
4. How many distinct artists are there?
5. Which artist has the most paintings in the collection? How many paintings are by this artist?
6. How many paintings are by male vs female artists?

If you want more:

1. How many artists of each gender are there?
2. In what year were the most paintings acquired? Created?
3. In what year was the first painting by a (solo) female artist acquired? When was that painting created? Which artist? What title?

From Last Week 2

From ggplot2:

- $\operatorname{aes}(x=, y=)$ (aesthetics)
- $\operatorname{aes}(x=, y=$, color $=$) (add color)
- $\operatorname{aes}(x=, y=$, size =) (add size)
- + facet_wrap(~) (facetting)

"Old School" (Challenge 2)¹

- Sketch the graphics below on paper, where the x-axis is variable year_created and the y-axis is variable year_acquired
\# A tibble: 4×4
painted acquired area gender <dbl> <dbl> <dbl> <chr>
1198019853 male
2199019952 male
3200020051 female
4201020152 female

1. A scatter plot
2. A scatter plot where the color of the points corresponds to gender
3. A scatter plot where the size of the points corresponds to area
4. A version of (1), but with separate plots by gender
[1] Shamelessly borrowed with much appreciation to Chester Ismay

1. A scatterplot

```
library(ggplot2)
ggplot(moma_ex, aes(painted, acquired)) +
    geom_point()
```


2. color points by gender

```
library(ggplot2)
ggplot(moma_ex, aes(painted, acquired, color = gender)) +
    geom_point()
```


3. size points by area

```
library(ggplot2)
ggplot(moma_ex, aes(painted, acquired, size = area)) +
    geom_point()
```


4. Faceting

```
library(ggplot2)
ggplot(moma_ex, aes(painted, acquired, color = gender)) +
    geom_point() + facet_wrap(~gender)
```


The Five-Named Graphs

- Scatterplot: geom_point()
- Line graph: geom_line()
- Histogram: geom_histogram()
- Boxplot: geom_boxplot()
- Bar graph: geom_bar() or geom_col (see Lab 01)

Lab 02: Plotting Challenges

Challenges 3-5 are in the Lab 02 code-through!
https://stevenbedrick.github.io/data-vis-labs-2022/02-moma.html

In

Basics of ggplot2 and dplyr:

R4DS ggplot2 chapter
ModernDive ggplot2 chapter
RStudio ggplot2 Cheatsheet
R4DS dplyr chapter
ModernDive dplyr chapter
RStudio dplyr Cheatsheet

